
ARRNo. 3K06

-— ~~TIONAL ADVISORY COMMITTEE FOR AERONAUTICS

wfurl’mll ‘REP(MU!
ORIGINALLY ISSUED
November 1943 as

Advance

PRINCIPLES OF MOMENT

STRUCTURES

Restricted Report 3K06

DISTRIBUTI(llAPPLIED TO STABILITY OF

COMPOSED OF BARS OR PLATES

By Eugene E. Lundquist, Elbridge Z. Stowell, end
Evan H. Schuette

Lengley Memorial Aeronautical Laboratory ~
Lengley Field, Va.

FiACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of
advance research results to sn authorized group requiring them for the war effort. They were pre-
viously held under a security status but sxe now unclassified. Some of these reports were not tech-
nically edited. All have been reproduced without change in order to expedite general distribution.

L- 326

.,,,, .,’ ‘, .JJ&;
.—-,,,, ,,,, -“-w~: ‘x.- .,

,.! .-. . . . . . . . . .-— .



L 31176013666189

1:
1.

i

19ATIO19AL ADVIGOIiY OOMMITTJ8E ~OR A19RONAU!CICS

. .... . ------ ,“.

““““AllVA19CIEE3STRICTED ~PORT

PR?HcIPLEs oy MOMI&T DIsTRIBtiTION APpLIMD TO STABILITY Or

STRUCTURES 0014PO~ED Or 13AES OR PLATUS

By Ilugene E. Lund.quist, Elbrid,ge Z- Stovell, and
Evan Hi Schubtte

.

SUMMAFIY

The principles of the Cross-method of moment distri-
bution, which have previously been applied to the stability
Of struet”ures comFo8ed of bars under axial load, are ap-
plied to the etakility of structure oomposed of long
plates undgr longitudinal load. A brief theoretical %reat-
ment of the eubjeot, ae aFplied to etructuree compoeed of
either bars or plates, is included, together with an il-
lustrative example for each of Lheae two types of struo-
ture. An app~niix SreSectc t~e &3rlvatto~ of the formulae
for the varsou~ stiffnesges and carry-over faotorg used
in solving problems In tho atabillty of etructuree compoeed
Of long plate~.

INTRODUCTION

The usual procedures for calculating oritical buck-
ling loads for the nembers of complex structures are
often somewhat involved and are not easily “reduced kO a

set of routine calculation. Many practical englneere,
as a oonsequenoe, do not attempt to caloulate critical
buckling load~.

one approach to the solution of problems in the eta-
bllity Of structural members that IS purely engineering
In character and that lends itself to simplified oaloula-
tlons Is provided by use of the principles of the Croes
method of nonent distribut~on (referenoe 1). The theory
of moment distribution, originally deviued as a rapid
method of strems analysis, deeoribes how the resistance
tO an external roment, a~pXied at any joint in a struc-
ture compose~ of bars, is distributed throughout the
etructure In accordance with the resistance of the various
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joints to rotation. The “original theory of Cross was
modified by James (reference 2) to take into aocount the -
pGS0ihilit7 Of axial load In the memberg.

I

The modified theory of James has already been ap-
plied In reference 3 to the stu~y of the atabllity of “
etxuctures oomposed of bars under axial load. Because of “
the fundamental charaoter of the .quantitles used In the
method of moment distribution and of the formulas asso-
ciated with them, it ie possible by suitable definition
of the quantities to apmly an analynis exaotly like that
of reference 3 to the etudy of the etablllty of atruU-
tureta composed of plstes under longitudinal load.

The present report gives a generalized derivation Of ‘

the formulas, applicable to both bar and plate structures.
!Che evaluation of various quantities for structures com-
posed of bare was given in reference 3. The corresponding
evaluation of the quantities for structure~ composed of
plates is given in an appendix to this report.

SYMBOLS

General:

E modulus of elasticity

w load on structure

e r~tation of joint

Y deflection

r aeriea at.ability factor

u modified stiffness etability factor

Bare:

--
E effeotive modulus of elasticity for atreeeee beyond

the elaetic range

I moment of inertia of cross seotion about an axis per-
pendicular to plane of bending

A area of CZOOU section
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radius of gyration
(T)

~ “-
A

length of bar

axial load in bar (absolute value)
.

[0P-ftxity coefficient in column formula ~ =
owa E
La

P.

$

P. J (nstiffness faotor ~~
P,

i

w

A

b

t

D

a

k

M

effeotive plat~ modulus for stresses beyond the
* elaetio range

Poissonle ratio

3

half-wave length of buckles In longitudinal direction

width of plate

thickneea of plate
.

flexural stiffness of plate per unit length [1.::~~d
effeotlve .flexural stiffness of plate for 8tres8ee

-.3

%eyond the elaetlc range
r

Et

~12(1-N) 1
longitudinal oompreeelve etreee in plat”e

bat=— a (always p06itive)
Tf=5

bending moment “
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If. amplitude of einuaoldally distributed moment

6 restraint coefficient

w deflection normal to plane of plate

subscripts:

i initial va-lue

or aritioal

r. flange

. .

w web

D181?II?ITIOHS

Member.- The word “member” is ueed in this report to
indicate either a bar or an infinitely long, flat, rectan-
gular plate.

Joint .- A joint In a etruoture composed of plates,
by analogy to a Joint in a struoture of bars, ie defined
as the entire lengbh of the intersection line between two
or more joined plates.

Stiffness and carry -over faotor.- If a bar 5s on un-
yielding supports at each end, the moment at one end neoes-
sary to produoe a rotation of one-fourth radian at that
end ie oalled the stiffnese of the bar and the ratio of
the moment developed at the far end to the moment applied
at the near end ia called the carry-over faator of the bar. .

In order to write similar definition of etlffnees
and oarry-over factor for platee, it is neoeseary to in-
clude a statement showing how the moment Is distributed
along the edges of the plate. !l?hesolution of the dif-
ferential equation for the critloal oompreeelve etreea Of
an infinitely long plate with given edge restraints re-
veals that, when the plate buckles, the momente and the
rotations at both edges of the plate vary sinusoidally
along the edgee and are in phase with eaoh other. The
ratio of moment per unit length at any point along the
edge to the rotation at that point Ie therefore oonstant
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along the edge for a given wave length. The following
definitions of atlff~eae and oarry-over factor for platee
iay therefore be written:

Stiffness - If an Infinitely -long flat plate 1s under
lougitudlnal. oompreesion with one unloaded edge On
an unyielding support, the ratio of moment per unit
length at any point along thie unloaded edge to the
rotation in quarter radians at that point where the
moment is distributed sinusoldally is oalled.the
stiffness of the plate.

Carry-over faotor - The ratio of the moment per unit
length developed at “my point along the far un-
loaded edge to the applied m“oment per unit length
at the oorrespondlng poeitlon along the near un-
loaded edgs ia called the oarry-o”ver faotor of the
plate.

The foregoing defin~tlon~ meke it possible to use various
etlffnesnee and c~rry.over faotors In a similar manner for
both bare and plates.

The sy~~ola used to designate the stiffnese and oarry-
Over faotor for the different types of support and re-
etraiut at the far end or edge are given in the following
table:

— —

Carry-over “;tiffnees
faotor Conditions at far end or ed~e

s G I’ar end or edge supported and
Yixed against rotation.

81 CI Far end or edge supported and
elasticall~ restrained
against rotation.

S11 ~11 = (’j Far end or ed%e tiupported
with no res”tralnt against
rotak%on.

8111 0111 = O Far edge free (no support
and no restraint aga.lnst
rotation), This oonditlon
Is not” used in oonneo%ion
with bare.

sIP OTT = -1 Far end or edge supported and
aub~ected to moment equal
and opposite to that applied
at near end or edge.

..
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The quantities S1, C1, SII, CII of this paper uorre- “
8pona to S’ , C~, S“, Cn, respectively, of referenoe 3.

The etlffness of a bar oomputed aooording to the def-

inition used herein is one-fourth that oomputed according
to the definition used by Crose (referenoe 1). In moment
distIlbUtiOn the relative, not the absolute, values of J

stiffnesses of the members arg of importance. The fore- “
going definition was selected so that the stiffnese Of a
bar of constant cros~ Bection with no axial load a=d
fixed at the far end would”be

.*
~1/L Inetead of 4rnI/L.

Sign conventlon.- A olookwise moment aoting on the
end of a bar or at~ny station along the elde edge of a
plate ia pooitive and cauBes positive rotation Et that
end or station. An external moment applied at a joint is
oonelderea to act on the joint; a oounterclookwlee moment
aoting on a iloint is positive.

CRITERION F09 STABILITY

If IEI assnrned that all members In a structure aom-
posed of bars lie in the plane in which buokling oocurts
and that the joints of the structure are held rigidly in
space but are free to rotate mb~ect to the elastic re-
straint of the connecting members. Similarly, in a 6truo-
ture composed of plates, it la assumed that ths joints be-
tween plates, or between plates and longitudinal restrain-
ing mem>ers, remain in their original straight lines but .
are free to rotate sub~eot io the elastic restraint of the
connecting members.

In the dlsouseion that follows, either of two crite-
rion for stability may 3e used. For eack criterion, the .
stiffness and carry-over factor are functions of the axial .’
load in the b~r or the longitudinal load In the plate,

)“i; (See references 2, 3, 4, and 5.):.;,:

Stiffnees oriterion for ~tahil.it~,- From a struoture.——— —
of many members the section comprising one joint ehown In
figure 1 is considered. Yigure 1 may be interpreted as
being either a plan view of a structure composed of bars
or “an end view of a structure composed of long plates.
An external moment of -1 is assumed to he applied at the
joint i. If the etruoture is oomposed of plates, this
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moment is the extersal moment par unit length at tho station
- ‘1 “i-tiaOT- ”90n0”ld9k-atf Qti. Bebause the angles between members

“ ‘at the #oint are preserved and the rotations of all members
at the joint muet therefore bo equal, the moment of 1 added
to balanoe this joint is distributed amoag the members in
proportion to their stiffnasses, as follows:

I $1Ija
to member ~~a

1

Zs:id

and so forth. The mo~ent-di stribution analysia Is now
;
& oomplete am far 8e momente at. Joint 1 are concerned.
i

1

For sthbility, the moment in the members must be’
finite.i The gtiffnesg orlterion for stability is there-
fore

2sIiJ ~ o (1)

The oonditlon of neitral stability gives the oritlcal
buckling load for the structure and IS obtained by setting
the stiffness Otability faotor equal to sero, or

XsIiJ = o (a)*
~ .-
$

!’ In the general ease there is more than one criiioal
buckling load; thus, satisfaction of equation (2) Is in-

1
su$fiolent for the solution of a given stability

f)
roblem,

Instead, the lowest load that satisfies equation 2 must
3 be calculated and compared with the load for whioh the
~ struoture iB designed. Only if this lowest orltical load

is greater than the design loa& is the structure stable. “

9
Aooording to the definition of stiffness, the moment

distributed to any pember must be the rotation of the
; ~oint multiplied by the stlffnqss of the member. Henoe

e, the rotation exp~essed ~n quarter--radians of Joint i
caused by the external moment -1, is

(3) “

————. .—_- ----- -. ———- . —
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Eouatlon -(3) will be used under the neation Method Of

Making Prellmlnary Estimate of the Critioal Load. ..

Seriee criterion for stability.- In a e.truoture of
meny ~embers, the section comprising two ~oints shown in “-
figure 2 is conaldered. An external moment of -1 ie as-
sumad to be applied at ~oint 1. If the structure is .

composed of plat~s, this moment is the Pxternal moment per
unit length at the etation under consideration. By e
moment-distribution analysi~ of referenoe 3, the total
moment in members ih at joint i 18

.

%h (l+ d+ra+rs+ ...)
siJ + d~h

or

(4)

where

Sijci %1%
r = (5)

Sij + ~S1ih Sji + @Jk

For stability, the total moment In members ih must
ke finite. The Bcrlee criterion for stability is there-
fore

r<l (6)

The oondit~on of neutral etabllity gives the orltical
%uckling load for the structure azd ie obtained by setting

rel (7)

The same conslderatione that apply to the stiffness
criterion for stability alRo apply to the eeriee criterion
for stat)ility. The lowest load that ~atisfies the equa- “
tion for aeutral ~tahility (in tizis case, equation (7))
zuet be calculated a~d compared with the load for which
the fl%ruoture is dealgned. If this lowest critical load
is greater than the de~ign load, the struoture ie stable. .

..
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A.coordlng to the definition of stiffnaes, the total---
moment in memberi iii-’at ~oin%” 1’ must-be the rotation
of Joint 1 multiplied by” the total stlffnesa. of members
ih. Henoe ~, the rotation In quarter-radians of joint

w
al i oaused by the external moment -1, is:
@

(8)

Formulae (2)-and (7) are both derived In referenoe 3.
Whether formula (2) or formula (7) IS to be ueed will de-
pend upon the partioulsr problem. In oaeeta in which the
struoture Ie symmetrical about a joint, the expressions
concorned with the stiffness criterion usuaLly involve
fewer calculatlone; when the struoture is symmedrlcal .
about a member, the formulas concerned with the series”
criterion offer oertain aiivantages. .

Stiffness criterion for etability when structure” is.—— ——
symmetrical about a mem”oer.- A modification of the etiff-.— .—-—
nees criterion in which the valueci of sIV are used iEI
sometimes convenient when the structure is symmetrical
about a membar, en e!iown in figure 3. When this criterion
is used, opposing unit moments are applied at the two ends
or edges of ~he ~em?)er a-tout which the structure is sym-
metrical. The stiffness stability factor of equation (2)
for the Joint 1 In figure 3 Is then written:

(9)

An illustration of the u~e of this special application Of
the stiffness criterion in a plate problem IS Inoluded In
the section on Examples,

&RY-0VJ5R 11’ACTORAND. STITFIJESS

In order to oheok the stabil$ty of a group of etruo-
tural members by use of the equatione previously given,
additional equations for thq carry-ov~r faator and etlff-
ness are required.
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The member id shown ,In figure 4, on an unyielding
support at 1 and elastlzally restrained at j by mem-
bers jk ie considered. The membere ~k are aleo elata-
tically regtralned at their far ende k. Ily a moment-
d.lstribuiion analysis (reference 3) It follows that the
carry-over faotor C1i.j 10 .

.
and the etlffnese “S-lj ‘e

sIij = ~ $sII~j _
- Cjidij

(lo)

(11)

Substitution of eauation (10) in eouation (11) gives

B’or member IJ, the limiting values of the carry-
over factor and of stiffness given by equations (10) and
(12), respootively, are ohtainsd as follows: When the
far end j iU pinned, there Is no elaetic restral;$ at
j and ZSIJk = O. ~or thie limiting condition, ij “

= cII~j = O, and s~~d = sIIij. When the far end j 18 “

fixed, there is complete restraint at ~ and ~S1jk S ~.

l’or thie limiting condition, cIlj =
where

.-

%j ana sIij - siJ

(13)

A similer equation, which expreseee sIV In terme

of S1zij and Gjl, can be ubtained from eq~~tlon (11)

,

—
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,- as f.oll.qys: If the restraint at the far end is such tha~..,.,.... .
CI

ij = -1’ there must be,- at-the far end, a m“oment of the

same magnitude but opposite In direction to that applied

at the near end. If, therefore, “ @ij .In equation (11)

equala -1, sIij becomes S1vij, where

(14)

The expressions used for the computation of numerioal

values of S, c, sI~, S?IZ, and sIV for plates are
given in the appendix.

Up to this point, all the eauatlone in this report
ar9 general. In nearly all caOe~ enoouatered in practice,
however, the crose section and arial load do not vary along

the length of each member. For this special caee, %j

= ‘jig Sij = Sjis and so fOrth* .In nraotlcal prohleme the

numerloal values for these quantities are obtained by use
of tables. Cuch table~ arc given for bars In referenoe 4, ‘$
where the argument ie (L/~)eff, and for plates In ref-

erence 5, where the argumente are k and A/l). .F
I

METHOD OF M.MIEG PRELIMINARY P!STIhAJ!iCCM’ T3E CRITIC-4L”LUD

In order to determine the lowest critlaal load fcr th
the etruoture, it is neceeeary to teet either equation
(2) or equation (7) for neutral stability for different
assumed 10aEe. The loweet load that e~tisfies either
equatlcn ie the oritleal load for the struoture; If
eval,uatlon Of the stiffness or the serlfls stability fao-
tors has required lengthy computations and If all the as-
eumed loads for which these factors have been evaluated
are lees than the low~et oritlcal load, ae evidenoed by

the fact that XSIi~ remains positive” or that r remains

leoe than unity, a method utilizing the work already done
may bs used to estimate the crltloal load. This eetlmated
load may then be .ueed as a trial load in equation (2) or
equation (7).
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The method of ‘estimating the lowest crltioal load is
based upon principles used in the analysis of experimental
fibservations In problems of elaet!o stability (refereacas .
6 and 7). Southwell (reference 6) mentioned that the un-
e.voidable imperfections in practical structures prevent
the reali.zatlon of the concept of a critical load at whloh
deflections begin. Instead, the Initial deflection pres-
ent in praotical struoture~ ~teadily grow with increaea
in load and, according to the ueual theory, the deflat-
ions beoome infinita as the critical load is approached.

The general relation between load and deflection for
problems of elastic stability (reference 7) ehowe that,
If (y -y,)/(p- Fl) Ie Qlotted as ordinate againot y - YZ

ag abecissa, the curve obtained when P approaches Pcr

is essentially a straight line of which the inverse elope
is Pcr - PI. Eere y i~ the &eflection at load P In

a member. yl and PI are initial valuee of F and P,
r,eepecti.vely, J?cr is t.ha lowest critical load, and

P1<P<Pcr

If simultaneous readings of load and deflection racordea
in a tact are plotted as d~ecribed with nny load P as ,
the initial reading, the vslua of Pcr - PI is readily

o’btained. The value Of. Pcr “is then given by the rala-

tion

Fcr = (i?cr -P, ) + PI (15)

The relation between load and-deflection can also be
appliad” to load and rotation of a joint provided that
there Is an initial rotation of the joints. The initial
rotation Ie obtained by the application of the external
moment -1 at 9ome joint, after which the load on the
structure is applied. As the lowest critical load Is
approached the rotatione become infinite.

If the distribution of the loads throughout the
structure does not change! aF the total load W Inoreaeee.
the axial or longitudinal lC&d in each member is propor-
tional to W. If (U - 61)/(w - ?’?3)i~ plotted as ordinate

against 6 - c, as absc.lssa, the curve obtained when W
ap~roaohee Wcr is essentially a straight line with in-

verse elope iVor - Wl, where 6 ie the rotation of a
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~oint under the external. mo~ent -1 when load W Is on
the struoture, 61 and Wl are Initial values Of e and
W, respeotlvely, Wor Is the loweet crltlcal load, and

Wl<w<wor

When. alnultaneoue v~ues of load and rotation are plotted
as desoribed with WI “as the initial load, the value of
wcr - Wz Is easily obtained. The value of Wor 3s then

given by the equation

wor = (Wcr - w,) + w, (16)

. .
The procedure to be used in eetimatlng the aritloal

10ad for a group of etruotural members is as fOllOWS:

1. E’or each of the load~ W assumed in the applloa-
tlon of one of the stability crlterlone (equation $2)o:r
equation (7)) to a joint, calculate the rotation
thie joint by meane of eo-uetion (3) or equation (8). ,

2. Designate the loveOt assumed value of W and
the oorremponding value of 6 as W= and el, rerapea-
tlvelym

3. Plot the curve of (6 - e~)/(w”- “ .wl) as ordinate
against e - el aa abscieaa and estimate Wcr from the

slope of the resulting line. If the curve obtained Ie
not essentially a straight line, successively higher val-
ues of the assumed lGads W should be designated WI
and the value of ‘#cr re-emtimated. The aocuraoy of the

estimated value of Wor IS improved as both W and WI

approach Wcr.

An example of the application of this method for pre-
diot~ng the lowest oriticel load ia given in reference 8.

As applied to a structure of plates, this method
gives a critical load for some particular value Of the
half wave length ~. The value of Wcr that Batiflflee

equation (2) or equation (7) and is a minimum with re-
epeot to A nust finally be found ae in the example,
given suhsequontly herein, in which the uee of this method
of estimating the aritical load for a given wave length
was not required.



DISCUSSION Or Xl!lTHODS

Each of the two equstions for neutral stability con-
teins the stiffness of oertain members elastloally re-
strained at their far ende or edges by other members,
These other members may aleo be elastically restrained at
their far ends or edges b~ still other members, and so on.
By suoaeesive application of equation (12) the reetrain-
“ing effect of all the membere in the etruoture oan be oon-
eidered.

In praotical calculations for structures composed of
bars, modification of the actual etruoture by the intro-
duction of pine at certain ~oints is usuallY neC@JSf5arY* .
It hqe aornetimes been the custom to consider only one
member elastically restrained at the ends by the adjacent
meabere, whioh are assumed to be pinned at the far ende~
The ~aloulatlon of Wcr by use of small groups of mem- “

hers in this manner 1s a.uite inadequate. Treatment of
much larger groups of members in one oalculatian Is neoea-
sary if a reaa~nably accurate. value of Wcr is to be ob-

tained.

If the stresses in any of the member~ of a struoture
are beyond the elastic ra~ge, the retluction of the modulus
of elaetlcity at these etraases maat also be considered. “
Discussi~ne of thie redaoed modulus for structures oom-
poced of bars are given in reference 3 and 8. Reference
9 disousees the reduced aodulus of elasticity fOr plates
at high etreseee.

EXAMPLES

Structure composed of barH.- The example of a strua-

ture ~ompoGed of bara presented herein la Identioal with
thai givnn in refere~ce 3; for the solution of the prob-
lem, the tables of reference 3,. rather than the more ex-
tensive tab19e of reference 4, were used.

A aontlnuous member of 1026 eteel is to be designed
to carry the londe shown In figure 5, Yor simpllclty,
the same cross eection will be ueed In all epans.

The uoual column formulas for 1025-eteel tubes are:
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It ia deeired

e
P

()
-= 36,000 - 1.172 ~ ;
A

16 ,

(17)

(18)
_= 276 XIOeP

A

(Y

&&

ap

that L/p be lese than 124. Equation (17)
therefore is used and;” on the asmzmptlon that- o = 2, a
tube of the following dimension is eeleoted as a trial
design for compression mgmbers %8, bc, and de.

Diameter, d . in. ... 1. 6a5
Wall thlokne~~, “t* :: : : : : ::: : : . in ..... 0.065
Area,A . . . . . , . . . . . . . . . .eqin... . 0.3186
Moment of inertia, I . . . , . . . . . . ih:4 .....0.09707

Acoording to the prcblem, this tube Is used as a continuous
member from y to f (fig. 5).

In order to cheek ths stability of the tube seleoted
In the trial dealgn, the critical buckling load will be
calculated and oompared with the lGads given in figure 6.
The axial load In the tension spans IS assumed to be al-
ways 8610/9940 or 0.866 timee the axial load In the oom-
preselon spans. This assumption oonforms to the condftion
that the forces in all members increase in the same r’atlo
as the lbad on the etruoture inoreases.

Both the dimensions and the loading of the member
shawn in figure 5 are eymmotrl.oal about span bo. It its.
therefore convenient to determine the” critical btiakling
load by use of the eerlee criterion for mtability. If
the unit external mompnt to be applied Is at joint b,
the series stability faotor is given by equation (5) with
the summation signs omitted. If the symmetry about span
bc is oonaldered, the serte~ stability factor beoomes

(Sbocbo)a
r

= (Sbc + $l~d)a
(19)
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where
~11

cd

side
1- cacd ~Irod + S=de

#lde
S11

1 - C=de
ef

SIIde + S11
ef

In the equation for s~de it 1s aesumed that the ends at

Y and f are pinned. “

The detailed procedure of oalculatlng the oritlcal
buckling load 16 ae follows:

1. A06ume a Berien of values for the axial load In
one of the members. In order that the values of load be
reasonable, a compression member should always be selected
and the values of the axial load for this member computed
from the oolumn formula by use of a series of values of 0. ‘
In this problem, oomprsseion member bo la gelected and
the oolumn formula 1s equation (17).

2. For eaoh aasumed axial load In the selected mem-
ber, oalculate the corresponding axial load in every other
member. In this problem the axial load in all compression
members is the same and the axial load in the tension mem-
bers is 0.866 times the axial load in the compression mem-
bers.

3. ~or each load in each of the members, oaloulate
P/A, X, and (L/~)eff. In this problem, ~ is obtained

from e~uatlon (17) by methods outlined in reference 3, or

1P [1:-36000”- ~
F.—–

# A 1.172

Eor each load in eaah of the members, determine
the v~iue of the terme required to evaluate e~.uatlon (19),
by use of the tables of reference 3 or 4.

. . .-—__ _____ — .-.—. — ._—___ — — -- —.
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‘6;- “The aemmed load that gives r .--1 . le. the arit -

Iaal buokling load.

The reeults of thle procedure ae applied to the prob -
~ lem of figure 5 are given In table I; the veluee of o In

the first column are gtven for reference only “and, ae
s etated In pbragraph 1 of.the foregoing prooedure, were eo

aeeumed that a Gerles of reasonatie Va~Ue6 for the axial
t load P in the compression menber ho oould be obtained.
i In the laet oolumn cf teble I aee given the values of r

oorreeponding to the assumed valuee of o. Ae the value
,.
\ of o Inoraaees from 1.4 to 2.6, the value of r in-

oreaeee from 0.173 to 1.63. If the data of table I are
plotted, it Ie found that when r=l the lowest oritical
buokling loade for the trial deglgn are

/
za, bo, and de. . . . . , 10,260 oompresslon

}
r ah and od . . . . . . . . 8,890 tensionI

These oritical loade are greater than the loada to whioh
the roqpec%ive members are subjected (see fig. 5). !l?he
tube seleo~cd for the trial design ie therefore stable
and the margin of ~afety for thn syetem Im

10260 - ~ = 8890 ~—- = 0.03
9940 8610

A eingle margin of gafety Iq obtained for the whole syetem
regardless of which member in used for its oaloulatlon be-
cauee, when the oritical load iS reached, all membere de-
flect.

More than one type of instability Is poseible, theo-
retloally; therefore, as the loadv P Inorease, there 1s
more than one value of P for which r = 1. (See table
I.) For each type of instability there is a oorreepond-
ing oritical load. In design, however, the loweet orit-
ioal load ehould be calculated and oompared with the loads
given 3n the problem.

Table I chows further that, for valuee of o between
1.4 and 1,6, the value of Side changee from poeitive to

negative. According to the etlffness crlterlcn for sta-
bility, this change ~f sign. means that membere de and
ef, coneldered alone, have changed from stable to un-
stable. It ie also noted that 810d ohanges from positive
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?-to negative for values of o between 2..6
od, de, and ef, aonralder~d alone, have
changed from stable to unptable, but at a
1o“ad. The change from stable to unstable

and 2.7; members
therefore &
much higher
for all members

oocura for valu;~ of o between 2.5 and 2;6 when -r=l,-

Struotur~ compoped of plat~n.- The critical compree-—
elve etresq for 100al Inetabillty of a 24S-T elumlnum”-
alloy Z-section oolumn with the cros~-sectional dimensions ,
shown in figure 6 is to be determined. I

It is convenient in symmetrical plate problems of
this type to use the modification of the stiffness crite-
rion for etabllity prevlouely dimcueeed. If opposing
unit external moments-are apnlled at the Joints between
the web and the flanges, the stiffness stability oriterlon,
as given by equation (9), Is

MI~J = s IIIF + I#vw n O (20)

where the subscripts F and W refer to the flange and
the web, re~peotlvely.

The tables of referenoe 5 give the values of 8111 ,,

SIV in the dimensionless form Sill/(~/b) andand

SIV/\fi/b) rather thah directly. It is therefore desir-
able to write ea-uation (20) in the form

.

(>If this equation la divided by ~ . it becomee
\b) F ‘

*

Because %f/~r = (tw/tp)3, the stability criterion may

be written in t~rme of the modified sti7fne@s stability

. .



>

19

“-”faotor-‘uD-”RU ..... .. ... -,..

(21)

The detailed prooeiiure of oaloulatlng the crltioal
oompreesive etreee is ae follows:

1. Compute. thq ratios tW/t~, ls~/bW, and bw/tw.

a. Assume a value of ~/bp.

3. Compute A /l)w from the equation

4. Aeeume a serieq of values of k~ and, for eaoh

value of kE , compute kW from the eauation

The indicated procedure 1.s adopted as being somewhat more
‘convenient than assumption of the stress and computation
of the oorrespanding values of k~ and kw . I.t Is per-

missible to oompute @ from the g$ven ea.uation even
though the etre?es 1s beyond the elastio range, beoau~e
the etreee and thue, by assumption, the effeotive plate
modulus are the same in the web and the flange.

5. Evaluate the modified stiffness stabllitY faotor
“U from equation (21) and the tables of referenoe 5.

6. Plot U ~gainet kp or kW and note the val-

ue of k far whioh U is equal to %ero.

7. Repeat etepe 2 to 6, aesuming different valuee
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< 8. Plot values of ky for U = O against A/1)~

(or kW for U = O against ~/bw) to determine the” rein-

Imum value of k~ (or kw).

, 9. With this minimum value of k, eval~ate the
oritloal stress. from the formula (see definition of k),

lmaii.—
‘ar =

bat

which may be written, for the web,

kwwa~tWa

acr = 12(1 - t.b)abwa

or, for the flange,

(22)

kpna~t~a

acr = (23)
12?(1 - lia)b~a

The value of ‘or will be the same regardless of whether

equation (22) or (23) Is used.

The re~ults of this procadure as applied to the probe
lem of figure 6 are given In table II. The values of *
for TJ = O in the last oolumn of table II were determined
according to step 6. If these value~ of ~ are plotted

against A/bw (step 8), the minimum value Of kw is

found to be about 2.9. (Seb fig. 7.) The critical oom-
preesive stress for local buckling of the taec!tlonshown
In figure 5 1s then, from eauation (22),

2.9 x ~.q x 10.6 x 10’0cr = lT,~O pounds per sqwe inoh
12X 0091 x (40)a =

This method provides a relatively simple means of
predicting the critical-stress values for oolumns Of
Z-seotion and other simple cros~ sections, such as I-,
ohannel, and rectangular-tube sectlone, Charts giving
the values of k determined by this method which were
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‘“p”rOpare”d for-wide ~angee ~f the di~~h~ion r-atlos, are pre-
sented in reference 10 f,or eolumne of I-, Z-, channel, and
rectangular-tube seotlon.

An alternate method of solution for prohlemn of this
type makes u~e of the oharte of referenoeq 11 and 12’ and
the tables of refereriae 5. An assumption ie made 80 to
whether the flange or the web will be primarily, response- .
ble for instability. If the flange Is expected to be pri-
marily responsible, the value of @VW for the web 1s de-

termined from the tables of ref~renoe 6. !l!hievalue la
then ueed in oomputlng the restraint coefficient

k Ie found fr~m ~;~:-erence 11 or 12), and the value of
ure 3 of reference 11. Beoauee .it ie necegaary to aeaume
a value of k and A/b in order to determine SIVW , the

method will obviously involve a trial-and-error proaedure.
Furthermore , if repeated calculation show that SIVW ia

negative, the aasumptl.on that the flange would be primarily
responelble for instability la incorrect. In this caee,
it will be neoeuaary to evaluate #IIF and to determine

k from figure 3 of reference 12. A detailed example of
the application of this method is given in reference 10.

Langley Memorial Aeronautical Laboratory,
L

National Advieory Committee for Aeronautics,
Langley Yield, Va.

APPEIHIIX A

DERIVATION OF STIFE’19ESSES AND CAREY-OVER FACTORS

Plate Under Oompreasion

In order to apply the method of moment dlqtribution
in any form, the ~~1~~~ of Gtiffae~G,?e and qrry-over

faoto~s are required tctr the members in quastion. For-
mulae for the evalua+,ion of these quantities for bara
were developed In refer~noe 3.

‘h’s ?
ix gives the

corresponding derivation of the formu ae for plates; the
elgn oonventlon used, as dlatlngula~ from that ~
in the aeotion on Definitions, oopreaponde to that of
referenee 13, in whioh defl~ W are poaitlve d~-
ward and a moment ie positi~e if It produces oompreaslon
In the upper fibers.
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General deflection eurfaae of a plate buokled under

compression.- Before the valuem of atiffneee and oarry-

over factor for flat plates under varioue oonditione of
edge restraint may be aomputed, the defleotlon surfaoe of
a flat plate buokled under a compressive load with a mo-

ment applied along one unloaded edge must be deeoribed.

An infinitely long flat plate under compression ie
ehown In figure 8 with oourdinate axes. II’orequilibrium
of an infinitesimal elempnt of the plate, the following
equation must be satlefled (referenoe 13., p. 324),

(Al)

On the assumption that the plate 1s infinitely long In
the direction of x, the oondltions at the ends do not
matter; the solution of equation (Al) is therefor~ taken
In the form

The unknown function f(y) may be determined by sub-
stituting the expression for w into eauation (Al). It
Is found that the function f muet ea~iefy the eg.uation,

la%.
dy4

Equation (All) ie

( )2m* daf+ W* _ w4k f=o
ha dya ~ Aaba

(~a)

an ordinary differential ectuation of the

-.

fourth order, the solution of whloh 1s

~ + C4 sin ~ (A4)‘f = Cl oosh ~ + oa sinh ~ + as ooe
b

where 01, Ca, C2+8 and C4 are arbitrary oonetanta and

f .=.&]~

WWF=
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The- defleatiun eurfacw of the plate is now found by
substituting this result for f in ea.uation (M):

In this solution, four oonditlons may be imposed along the
unloaded edges to fix the four oonstante. he of the four
conditions will alwaye Bpecify the presence of a moment

+0 00s y along the near edge, and another will speoify

that the deflection w along thie edge is zero. The re-
maining two conditions will be varied to suit the condi-
tions at the far edge of the plate of which the stiffness
is being oomputed.

Stiffness of a plate with far edge fixed.- Uigure 9

shows a flat rectangular plate under compreeeion with a

moment M applied along one edge at y = -~ and with

complete reetraint agai.net rotation along the parallel

bedge at y = -. The stiffnese
2

S of the plate ie defined

as

(A6)

where (6]y=~ ie the rotation of the edge at y=.~

expressed in o-uarter.radiane.

The general expreeeion (A5) for the defleatlon of the
plate muet be epeolallzed to the ease of figure 9 In which
the boundary oonditione are:

(w)Y=*E = 0
2

(A7)
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(A9)

After determination of the arbitrary constants in
(A5) by use of these boundary oonditlonta, the deflection
surfaoe for the case of figure 9 1s found to be

2

From this deflection ~urface there IS obtained

where. 6 la expressed in
in equation (A6) givee

, ::[(g’+(g’]

.

(Ale)

1

1 1

a tanl$+$ ta+ a cotl$-fl”co$

(All)

guarter.-radians. Substitution

1
+

1

1

611= ~ (A12)
~ot$ -$0$ 1
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Oarr y-over faator of a plate with far edge fixed .-..

The oarry-over factor 1S defined as the ratio of the mo-

mb~~ d~~;l~p~d k~ &he far edge y = ~ (fig. 9) to thea
N *

s moment at the near edge y = -~c The moment developed

at the far edge Is

Y

(A13)

where w IH the defleotlon of the plate of figure 9,..;\ given by equation (A1O).

If the Indioated differentiation ofequstlon (A1O)
Is made and the result substituted in equation (A13), it
Is found that

i.
The moment at the near edge 1s, from equation (A8),

ii

1
my=~ = Ho Oos y (A15)

.
a

By definition, the carry-over factor $s

-(M) ~=+:
(
~ anh~

)(
+ ~an~ - ~oth: -

P

o
= (M)y=-~ =

( )(

(A16)

a + ~an~ +a % anhz-a )
~oth: - ~ot~

Ii with the sign of the moment at “the far edge ohangod tO

f;.
oonform to the sign convention given in the seotion on
Ilefinltions.

:; .

-. - .- .- —— .—
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Stiffness of a plate with Its far ed~e hinged.-

Eigure 10 shows a flat rectangular plate under oompres-

.aion with the two edges y = ‘~ hinged to supporte. A.a
“ moment M “ie applied to the edge Y=-:; and the

stiffness of the plate ie defined as

(A17)

where (9)Y=-: -1s the rotation of the edge y = -~ ex-

pressed in ~uarter-rndians. The general e~preseion (A6)
will again be used to compute 6 and the boundary &on-
ditions will be:

-5 ( )—--+.Wa%
ay~

= M = k!6 COB
in= f..k “%

2

I

(aaW
—+.fi ) =0
aya . ~xa

y=:.

(A189

(A19)

(A20)

By use of these boundary conditions, the arbitrary con-
etante In equation (A5) may be oomputed, and it.is found
that the deflection surface for the caee of figu,re 10 Is

Iioba

f.

al~
w= —-

25(aa + pa) Shh;

L

Erom thfs deflootion

A

surface, the magnitude of the

~otation 0 along the ed’ge y = -~ 10 found to be



where e IS expreseed In quarter-radians. Upon substi-
tution of this expression for e in equation (A17), It
is found that

s11 = ~ “($ + (:Y (Mla)

Aecordlng to the boundary

t~o~ (A20), there is no moment
.-

.—–—.

>Oth: - E:~cot

oondltlon given in equa-

at the edge h Henoe,7=2.

the oarry-over factor ~11 with the far edge hinged is .
zero.

Stiffness of a plate with far edge free.- Figure 11
shows a flat rectangular.plate under compression with one
edge y.b free and a moment M applied to the paral-
lel edge y = O. The stiffness of the plate is defined
aO

()

S111 - ~
ey=o

(A24) .

where (e) la the rotation of the plate along the
Y=~

edge y = O and la expreeged In quarter-radiane.

The general exp%eseion (A5) is used to oompute lj~e
rotation e. The boundary conditions for a plate with
far edge free are:

(W)y=o = o (A25)

(A26)



aa
.

. =0 (M?) “

.

(AN)
)

Upon determination of the arbitrary oonstants In
equation (M) by use of these” boundary oondltlons, the
deflection eurfaoe for the aaee of figure 11 ie found to
be

7

where

m= (;J - “(N

“ ‘(:Y + “(%Y.

From the deflection surface, the rotation along the edge
y=o is found to be

.

.,
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(B)ro

I . .

= @=o=[,(RJ2a#mn + a#(ma+na)cosha cos $ + (maP2-n%2)sinh a sin El
(~30)

niapsinh acosp-napcosh CLSinp .
.,

where 6 Ita expreaeed In quarter-radians. Upon substitution of this: expres.-;
.sion for 9 in equation (A24), the stiffness is fbund to be ,

. .

. .

,.

“’1+[(9’+(0’1 . 8

aa
Cosh - Cosa E

2. 2

(An)

. .

J,

The trlgonome%rio and hyperbolic functions have been converted to the half angle
in order that the name functions Can be used as In the calculation of the other
atlffneaaem. ,
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Aooordiqg to the boundary oondition of equation (A27),
there is no moment along the edge y = b. The oarry-over
faotor 0111 IS thus sero for the far edge free. c

Stiffness of a plhte with ea.ual and opposite moments ..
.&pplled along the unloaded edges.- 3Mgure 12 shove a flat ,.

‘rectangular plate under oompreesion, with equal and op- , .

p;eite momente applied to the edgee F = +~a The stiffness

of the plate Ie defined ae

(A32)

.
whe”re (9.)7=-L Ie the rotation along the edge y = -$
..

a

expressed in quarter-radlana,
,

The boundar~ conditions for this ease are: - “

. (aaw5—
)

+ .22 = -M = -X. 00s;
. by= ax= #Y~

(A34)

Aooordlng to the eign convention “of the appendix, the
moments at the two edges have the same sign although they
aot in opposite directions. By means of theee boundary
conditions, the arbitrary constants In eauatlon (A5) may
be oomputed, and the defleotlon surfaoe for the ease of
figure 12 is found to be

(A36) ,

I
.-—.
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1 Front this’~efleotfon surfaoe, the rotation 0 along the1

I: edge y = -~ is found to be

which is expressed in quarter-radians. Substitution of
this expression for S in equation (A32) gives the stiff-
ness of the plate,

.
.

Because the momgnt at y = ~ IS ea.ual and opposite

to that at y = -1, the carry-over factor OIV is -1

in accordance wit~ the sign convention given In the seo-
tion on Definitions.

Plate under Tension

If the dlrecti.on of the applied longitudinal force
on the plate of figure 8 is reversed, the plate will be
under tension and equation (Al) will beoome

The fo=mal solution of this equation 1s precisely the
same as equation (A6), except that the parameters m and
P are now d.ofined by

(A39)



‘mm%= (A40) “

Because the stlffnesses s, SII, sIII, and sIV,

and the oarry-over factor Cz ae oaloulated for a plate ,
under compression, are baaed directly upon equation (A5),

“ it follows that the expression derived for each one of
these quantities is s%ill oorrect when the plate ie under
tension, provided u and P are now given by equationta
(A39) a~d- (A40).

The new expressions for a md
may be written in the form s

a-=A+iB
2

P~= B + iA

where

—

$ are complex and

(A41)

(AM)

A=; J&/’-
/ ,

The expressions (A41) and (A42) for m

(A43)

(A44)

and S ~re
substituted-into equatidns (A12) for S, eciuatton (A23)

for #1, equation (A31)” for s111, equation (A37) for

sIV, and equation (A16) for C. The results of the sub-
stitution shcw that, for a plate in tfinsion,

8 =5LT Asin4B-Bslnh4A—— (A45 )
b 2 Aasina2B-Basinha2A

?
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~11 = : & (oosh2A+oos2B’) (sinlial+sinaB~

Bsinh4A-Asin4B
(A46)

w
ml

x A(ma-16A%a+~a )slnk134(ma-16A%3a-&aAa)shh4A

“ ‘1’1=&~a(Aa)aAa(m+4Ba)a .
(A47)

1[ 1+A*(m+k@)a4=(m.~a)a ~sinha24csosa2EtooshaWj.naZ8)
.

SIV . ~~AB
cosh3A + cos2B

Bsinh2A + Asin2B

~ = Aoosh2Asln2B - Bsinh2A~os2B
Bcosh2Asinh2A - Asin2Bcos2B

where
a

m =
()

4(Aa-Ba]-w ~

(A48)

(A49) -

(A50)

. .
These formulas permit tahleH of stiffneseee and

carry-over faatorta to be prepared for a-plate in teneion
similar to the tables of reference 6 for a plate in oom-
preseion. Suoh tables, however, have not been prepared,
and in lieu of tkem, formulas (A45) to (A49) may be used t
direotly if the need should arise.

m

1. Oroms, EaEdy: Analysis of Con~inuous Frames by Dis-
tributing Fixed-End Moments. Trans. Am. SOO. Civil
Eng., vol. 96, 1932, pp. 1-10.

2. James, Ben~amin Wylie: Prinoipal Effects of Axial
Load on Moment-Distribution Analysie of Rigid Strno-
turee. E!ACA Tit NO. 534, 193b.

. .

. .
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3’HJLTS FOR SOHJ!T!IOI!7OF BAR PEO-

[3’ormember ef, P = O, P/A = O, E =28 X 10° lb/sq in.,

(Lfj)eff = o, eni@cf = 3.397 x 104 lb-in.~

I Members .bc, and de
i

Member cd.
I

c P TJ\(-) P L
P 7-i& a \j P x, ii ()eff 7 eff
(lb) (1~/sq in.) (lbfsq +a.) (lb) (lb/sq in.) (lb/sq In.)

1.4 9,2!30 2’3,150 17.30X 106 3.72 gi)l~ 25,230 23.49x 106 2997
1.J 9,430 ~9s5W 16.39 3,!35 gi70 25,620 22.9s 3.03
1.6 9,550 29,ggo 1 95

?$ ?
,97 g270 25,970 22.52 3.CM

~“7 9,670 30,340 1}.8 *1O Z370 26,270 22.09 3.12
1.8 99770 30:%6 14.16 4.22 fMO 26,550 ~.69 3.17
199 9,g60 13..52 11.9

i.?
I@o 26,790 21.32 3.21.

2.0 9,940 31,19 12.98 4. t163.o 27,010 20,99 3.25
2.1 10,010 31,420 12.44 4.55 86To 27,210 20.6g 3.29
2.2 10,OI3O 31,Qo

k
n. 6 4.66 qqo 27t390 20.y3 3.32

2.
t

10,140 31,WO 11 ● 4.77 qtw 27,560 20.12 3*35
2. 10,190 31,990 11.10 4.86 M20 27,700 lg.gg

10,240
39X

2“5 32,150 10,71 4.g6 i3$70 27,WO 19.63 3.41
2.6 10,290 32, ~

?42
10.34 5.06 aglo 27,970 19.41 3.44

2.7 10,340 32, 9*99 5.16 ag50 2g,090 19.21 3.46
2.g 10, jgo 32s570 9.66 5.26 13ggo 2g,zLo lg.gg

10,410
;Dg

2.9 .“ 32,6go 9.38 5-
it

9020 2g: 00
ho

11H!5
3.0 10,450 32,790 9.10 59 9050 2g, 113.66 3:53

.
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1.4
105
1.6
1-7
l.g
199
2.0
2.1
2.2

2“3
2.4
295
2.6
2~7
2mg

2~9
3.0

Member ho

%

(lb-in.)

1.404X104
1.155

.930

.699

.&u

.2gg “

.095
-.1o1
-.302
~:~

-. gg6
-1 .lM
-1 ● 361
-1.633 .
-1.911
-2.227

Sabc cabc

;lba-in. a)

5.45x 108
5.24 .

z
●q
,99

4.94
4.#36
4.92
4.99
5.13
5.34
5.54
5.W3
6;33
6.91
7.71
3.69
9.96

Member cd

Cacd

0.1224
.1197
.1174
.1151
.1130
.1112
.1096
.1077
.1064
.lc~l
.1040
.1025
.lm4
.1G06
.0994
.09~6
.og7i3

5.07X1C4
5.01
4.95
4.90
4.s5
4.80
4.76
4.72
4.6f3
4.65
4.62
4.513
$.56
4.53
4.50
4.48
4.45

~able is from reference3, table 111.

Member de

Caae.

2.7&j
3.9s9
5.g64

10.22
22.94
5g.@

4593
?8Smg
56.23
22.72
12.47
7.619
5.lgg

3*79g
2~930
2.402
2.023

SrItie

(lb-i~. )

-2.49X 10*
-3.41
-4. ;!5
4.W+

-10.01
-16.59

G
- .71

.12
16.6g
10.25
7.51

z
973
●57

3*73
3*W5
2.633
2.239

s~de “

(lb-in. )

i2,6b3
-32.69

-I.?,&76
-S,lgg
-7,g 3

-10,3?0
43,140
-16,150
-19,590
-22,020
-26, 0~0
-71 --~.,dul

&
-7,610

,050
-58,070
-74,590

-102,200

:

Srcd

lb-in .:

. .

5i,cno
50,~clo
49,200
&,320
k7 ,460
M, 560

z
;61$0
, 00
k43, 0

42,470”
40,po
>f m7-
30,qo
-g,750
go,560
59Wo
53,f32Q

.-

M33

?8
.1 g
.1
.163
.lKI.
.200
.226
.261
:y.l.

?● ’84

L:by
I.yf

.l~
●533

1.QO

!
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TABLB II

RESULTS YOR SOLUTIOE Ol?PLATE PEOBLEil

0.8 3.2 1.6820 0.841O
.9 3.6 1.4638 .’?419 -

1,0 4.0 1.2370 .6185
1.2 4.0 .4937 .2468

- ~~~T
~
b~ = 3.0, ~

bw = 100
.-. —

o.’? 2,8 0.5907 0,2554 -0,0621 0. 23G3
.8 ““3.2 .4221 ● 2111 -.3040 -.0929
.9 3.6 .22?5 .1137 -.6648 -.6411 3.104

1.0 4.0 0 0 -1.2117 -1.2117
——

0.7 2.8 0.4373 0.2186 -0.1640 0.0646 .
.8 3.2 ,3568 .1784 -.2868
.9 3.6 .2706 .1353 -.4351 ::::;; 2.944

1,0 4.0 .1781 .0890 -.6179 -.6289

0.7 2.8 0.4448 0.2224 -0.1166 0.1068
,8 3.2 ,4008 .2004 -.1799 .0205
.9 3,6 .3561 .1?76 -.2601 -.0726 3.292

1.0 4.0 .3076 .1538 -.3285 -.1747

I
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Figure 1.- Seotion caqprising one joint.
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Uigure 3.- Section of structure
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Figure 4.- Member restrained ~ other members
at far end.



kACA Fig. 5,6

Axial load in pounds: T, tension; C, corffpression.
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l?igure6.- Illustrative plate problem.
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Plot of ~ against A/bw for
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Eigure 8.- Infinitely long flat plate under long-
itudinal compreeaionm
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Figure 9.- Plate with moment
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at naar edge, far edge fixed.
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~lgure 10.- Plate with manent applied at near edge, far edge hingerl.
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~igure 11.- Plate with moment applied at near edge, far edge free.
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3’lgure12.~ Plate ulth moment applled
equal and opposite mcznent

at near edge,
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